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Overview of Presentation

• History of project / Motivation

• Perfect tracking control of non-minimum 
phase systems

• Biofuels from microalgae

• Conclusions / Future Directions
2



Commercial HVAC

• Difficult to model a whole 
building

• Knowledge of “disturbances”
• Reinforcement learning 

control
• Adaption (done inside the 

feedback loop)
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Robust Reinforcement Learning Control

• Guaranteeing stability  ~  Computationally intensive
• Based on IQCs (Integral Quadratic Constraints)
• Can adapt to both reference and disturbance inputs
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Reduce Stability Complexity

• Fix the feedback (FB) controller
• Adapt the feedforward (FF) controllers
• Closed-loop stability ~ Provide by FB
• FF adaptation ~ Anything (provided bounded)
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Neuromuscular Actuation Systems

• Calculate desired path (FF calculation)
• Ballistic response (FF Control)
• Dynamic corrections to ballistic response (FB 

control on small error signals) 



Standard Architecture

• Can provide perfect tracking for minimum-
phase systems

• Unstable plants allowed
• Cannot (stably and causally) handle time 

delays and right-half plane zeros
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Extension to Time Delays

• Delay reference input
• Later – extension to (RHP zeros)
• Previously not presented in literature
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Motivation: Growing Microalgae
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• Application: Biofuels from 
microalgae 

• Utilize externally supplied CO2
to produce more microalgae.

• CO2 source and microalgae 
physically separated (transport 
delays)

• Sensors are expensive and 
unreliable (FF control desirable)



Perfect Tracking Control of 
Non-minimum Phase Systems
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Perfect Tracking

• What trajectory can the plant actually follow?
• What control signal will drive the plant along 

this trajectory?
• Characterize the class of signals that may be 

tracked in the nominal case (i.e., when the 
plant model is perfect) with no external 
disturbances.

• Extensions to non-minimum phase systems.
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Contributions
• Two controller architectures that provide 

perfect tracking for a larger class of systems 
(particularly, systems with time delays)
– Dual Feedforward Predictive Control (DFFPC)
– Dual Feedforward Smith Predictor (DFFPC)

• Clarify limitations of Smith predictor

• Robustness tools
• Feedforward controller design methodologies
• Adaptation techniques
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Plant Factorization

• Minimum-phase and stable: Re(s) < 0
• Non-minimum phase and unstable Re(s) ≥ 0
• Non-minimum phase includes RHP zeros and 

time delays
• Normalize via KDC such that:

– Nnmp(0) = Nmp(0) = Ds(0) = Du(0) = 1
• Could extend to integrators (include in Du(s))
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Plant Decomposition
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Split plant into non-invertible 
and invertible part

Non-invertible part contains non-
minimum phase components

Invertible part contains 
minimum- phase components

NB: In general, Gnoi(s) and 
Gi

-1(s) are not proper 
transfer functions



DFFPC Overview
• Restricted to causal SISO systems (i.e., no prior 

knowledge of the reference input).
• Define a class of signals that can be perfectly 

tracked by non-minimum phase LTI systems.
– Perfect tracking of a filtered reference input in the 

nominal case with no external disturbances
• Robustness tools for evaluating robust 

performance on a physical system.
• Stable adaptation techniques to improve 

performance. (Addressed Later)
• Can handle unstable systems
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Dual Feedforward Predictive Control
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• At steady-state, rff(t) = r (t) or 
• The feedforward transfer functions must be 

proper:                               and



Nominal Case

• Perfect Tracking

• Desired closed-loop 
response contains non-
minimum phase 
dynamics
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Example: Perfect Tracking of a NMP System
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Picked a Pdes(s) that will make the two 
feedfoward controllers (below) proper



Simulation Results
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Plant Implications
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Robustness Analysis: 
Additive Uncertainty
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Robustness Analysis: 
Additive Uncertainty
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Robustness Analysis Cont’

• Necessary and sufficient condition for robust 
performance with additive uncertainty is:

• Similar result for multiplicative uncertainty.
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Original Smith Predictor

• Eliminate time delay from feedback loop 
(better nominal tracking performance)
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Modified Smith Predictor

• Improved disturbance rejection
• Not suitable for unstable systems 33



DFFSP Overview
• Restricted to causal SISO systems (i.e., no prior 

knowledge of the reference input).
• Define a class of signals that can be perfectly 

tracked by stable non-minimum phase LTI 
systems.
– Perfect tracking of a filtered reference input in the 

nominal case with no external disturbances
• Robustness tools for evaluating robust 

performance on a physical system.
• Stable adaptation techniques to improve 

performance. (Addressed Later)
• Cannot handle unstable systems
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Dual Feedforward Smith Predictor
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• At steady-state, rff(t) = r (t) or 
• The feedforward transfer functions must be 

proper:                 and
• handled in feedback loop 



(Nominal) Smith Predictor
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Nominal DFFSP

• Perfect Tracking

• Desired closed-loop 
response contains non-
minimum phase dynamics
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Robustness Analysis: 
Additive Uncertainty
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Robustness Analysis: 
Additive Uncertainty
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Robustness Analysis Cont’

• Necessary and sufficient condition for robust 
performance additive uncertainty is:

• Similar result for multiplicative uncertainty
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DFFPC vs. DFFSP

• DFFPC can handle unstable systems, DFFSP 
cannot

• DFFSP will result in a higher order controller 
due to (Gi(s)-G(s))

• Smith predictor improved disturbance 
rejection properties are not applicable here 
(Gm(s) = Gi(s))

• Adapting the DFFSP architecture is less 
straightforward than the DFFPC architecture
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Comments on Methods
• Valid for both continuous-time and discrete-

time implementations
• Perfect control for a wide class of systems

– Minimum-phase and non-minimum phase
– Stable and Unstable*
– Biproper and strictly proper systems
– Systems with or without time delays

• Robustness tools
• Design Methodologies (Next)
• Adaptation (Later)

44* (for DFFPC only)



Feedforward 2 (FF2(s)) Design

• Pdes(s) (and FF2(s))common to feedforward 
plus feedback architectures presented here

• Direct design

• Robust and optimal design
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Direct Design

• Design for specific closed-loop characteristics
– e.g., specific rise time with no overshoot
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Direct Design Example
• Minimum-phase Plant
• Closed-loop is Pdes(s)

• Example: 

• Design for rise time (with no overshoot):

• NB: Numerical solution to above equation.
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Nominal Step Responses
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Robust and Optimal FF Design
• Optimal control – minimize gain from 

exogenous inputs to exogenous outputs
• Robust control – optimal control in the 

presence of uncertainty
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Design Method
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NB: FF2(s) = Pdes(s) Gi
-1(s)



FF Design Summary

• Based on an existing example (Faanes 2003)
• Provided more investigation into the resulting 

feedforward controller structure
– Cancellations and near misses (lower order Pdes(s)

designs)

• Extensions may be made to unstable plants
• Option to design on either G(s) or Gi(s)

51



Numerical Example
• Plant definition:
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Robust Feedback Controller Design
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Feedforward Design
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Example Robust Performance
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Adaptation

• Stability provided by only adapting FF pieces
• Model identification adaptive control

– Identify LTI plant models
– Update feedforward controller blocks directly

• Reinforcement learning control
– Original motivation
– Echo state networks
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Model Identification Adaptive Control 

• For stability, only adapt feedforward controllers
• Architectures provide a unique and 

straightforward way to update feedforward 
controllers

57



MIAC DFFPC

• Natural split of identified plant to FF controllers
• Stability guaranteed (even if plant is unstable)
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MIAC DFFSP

• Augmentation required to restore perfect tracking
• Smith predictor still requires a stable plant
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Adaptation Example: 
Nominal Simulation 
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Perturbed Simulation
(Time Delay Mismatch of 0.05 seconds)
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Perfect Tracking Restored after Adaptation
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Reinforcement Learning Control

• Augment (or replace) existing feedforward 
structure

• Echo state networks
– Ability to guaranteed stability of recurrent 

connections 
– Allows for larger networks (one-time stability 

analysis)
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Microalgae 
Modeling 

and 
Control
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Microalgae Overview
• Algae can convert excess carbon from human activity 

into biofuels
• Produce an estimated 7000-15000 gallons per acre per 

year1

• Supply 50% of the US fuel needs while using only 1.1% 
to 2.5% of the existing cropping land2

– Much of the land around existing power plants is open and 
would be suitable for algae farms

– Does not compete with agricultural land  

1 NREL (1998)
2 Chisti (2007)
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Research Challenges
• Design and operate PBRs at a large scale

– Problems with dissolved oxygen (DO) removal
– Problems with efficient CO2 delivery (i.e., 

achieving mass transfer)
– Efficient utilization of all available light (PAR)
– Requires a mechanical, biological, chemical, 

electrical, and controls solution
• Developing models and controllers based on 

the physics of the reactor that scale to 
commercial size reactors 
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Reactor Test Bed

• Extended surface flat 
panel reactor provides
efficient sun utilization

• CO2 rich gas bubbled 
through the flat panels 
to deliver CO2 and 
remove produced 
dissolved O2
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Reactor Setup
PAR

Algae and 
Media

(gas)CO2
m (gas)O2

m
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Modeling and Control Overview

• Develop a component based model that 
isolates the three components
– Light subsystem (algebraic model)
– Photosynthesis subsystem (algae dynamics)
– Water chemistry subsystem (media dynamics)

• Use model to provide feedforward CO2 
delivery to maintain pH.
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Model Block Diagram
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Light Subsystem
• About 45% of the full spectrum of light is 

photosynthetically active radiation (PAR)
• A fraction of the direct light will enter the bath 

and the rest will reflect
• Amount of light that reaches the algae is 

function of direct light and reactor orientation
• Mixing affects the amount of light the algae 

can utilize
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Photosynthesis Subsystem
• Models growth as a function of incident PAR
• Growth measures

– Biomass produced
– CO2 consumed 
– O2 produced

• Based on densities
– Allows for reactor comparison independent of 

scale
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Growth Model Description
• Growth – driven by photosynthesis

– Exponential when excess light
– Linear above critical density (mdense)
– Exponential Respiration (during both light and dark)

Exponential 
growth 
everywhere
Overall mass 
accumulation is 
exponential

Exponential 
growth here 
(fixed mass that 
utilizes light)

No growth here

Overall growth is 
linear (only 
mdense is 
growing)

Excess 
Light

Light Limited
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Growth Model Equations
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Water Chemistry Subsystem
• Models the dissolved gases (CO2 and O2) in the media
• Interactions with algae 

– CO2 consumed / O2 produced during photosynthesis, vise 
versa during respiration

• Interactions with sparged gas
– Dissolved O2 and dissolved CO2 seek equilibrium between 

bubbles and media
– First order plus dead time models

• pH used to infer CO2 concentration
– Takes a few seconds for pH to equilibrate from dissolved 

CO2
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Water Chemistry Models
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Dissolved Oxygen Model
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Observer-Based FF Control



pH Model (with Growth Dynamics)
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Modified DFFPC pH Regulation
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Achievable pH Regulation
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Conclusions

• Perfect tracking for a larger class of systems
– Characterize achievable performance

• Robustness tools to analyze performance in 
the presence of model uncertainty

• Adaption methods for the LTI and NL 
Feedforward controller(s)

• Physics-based algae model
• Verified algae model on experimental data
• Characterized achievable pH control
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Future Directions
• Feedforward design

– Design for e(t)  =  y(t)  - r(t)
– Design perfect tracking of r(t)

• Adaptation
• MIMO systems
• Microalgae modeling and control

– Lipid model
– System level optimization

• Control-Structure Interactions
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Questions
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